Дайдихьулийсса сурат (5120 × 2880 пиксельду, суратдалул кӀушиву: 27,66 МБ, MIME жура: application/sla)

Ва сурат на Викискладе бучӀиссар зузи дан цамур ишрай. Мунияту чӀапӀи шикку буккин бучӀиссар.

View Earth dry elevation.stl  on viewstl.com

КутӀасса бусала

Сурат даву
English: Earth without liquid water greatly exaggerated elevation model by CMG Lee using depthmap File:Earth_dry_elevation.png generated from NASA Visible Earth topography and bathymetry data.
Кьини
Ляхъаву Цала даву
Дурма Cmglee
Другие версии
Earth dry elevation.png
Earth dry elevation 2.stl
Earth dry elevation 10x.stl

Python source

#!/usr/bin/env python

exaggeration   = 10
header         = ('Dry Earth %s-times-exaggerated elevation model by CMG Lee using NASA data.'
                  % (exaggeration))
path_png_alt   = 'earth_dry_elevation.png' ## 1-channel equirectangular PNG
luma_datum     = 141                       ## image intensity level (of 0-255) of datum
radius_datum   = 6378.137                  ## mean radius of zero level in km
f_wgs84        = 1 / 298.257223563         ## WGS84 flattening factor
km_per_luma    = (10.994 + 8.848) / 255 * exaggeration ## min and max elevations in km
scale          = 1e-2                      ## overall scale of model in km^-1
lat_offset     = 5.0 / 8                   ## rotation around planet axis in revolutions
n_division     = 200                       ## each cubic face divided into n_division^2 squares

class Png:
 def __init__(self, path):
  (self.width, self.height, self.pixels, self.metadatas) = png.Reader(path).read_flat()
 def __str__(self): return str((self.width, self.height, len(self.pixels), self.metadatas))

import time, re, math, struct, png
time.start = time.time()
def log(string): print('%6.3fs\t%s' % (time.time() - time.start, string))
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
 def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0+$', '', str(eval(tag[1:-1])))
  if (i_sep < 0) else ('{:%s}' % tag[i_sep + 1:-1]).format(eval(tag[1:i_sep])))
 return (re.sub(r'(?<!{){[^{}]+}', lambda m:f(m.group()), string)
         .replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def tabbify(cellss, separator='|'):
 cellpadss = [list(rows) + [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
 fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
 return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
 return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def viscam_colour(colour):
 colour_hex      = hex_rgb(colour)
 colour_top5bits = [int(colour_hex[i:i+2], 16) >> 3 for i in range(1,7,2)]
 return (1 << 15) + (colour_top5bits[0] << 10) + (colour_top5bits[1] << 5) + colour_top5bits[2]
def roundm(x, multiple=1):
 if   (isinstance(x, tuple)): return tuple(roundm(list(x), multiple))
 elif (isinstance(x, list )): return [roundm(x_i, multiple) for x_i in x]
 else: return int(math.floor(float(x) / multiple + 0.5)) * multiple
def average(xs): return None if (len(xs) == 0) else float(sum(xs)) / len(xs)
def flatten(lss): return [l for ls in lss for l in ls]
def rotate(facetss, degs): ## around x then y then z axes
 (deg_x,deg_y,deg_z) = degs
 (sin_x,cos_x) = (math.sin(math.radians(deg_x)), math.cos(math.radians(deg_x)))
 (sin_y,cos_y) = (math.sin(math.radians(deg_y)), math.cos(math.radians(deg_y)))
 (sin_z,cos_z) = (math.sin(math.radians(deg_z)), math.cos(math.radians(deg_z)))
 facet_rotatess = []
 for facets in facetss:
  facet_rotates = []
  for i_point in range(4):
   (x,y,z) = [facets[3 * i_point + i_xyz] for i_xyz in range(3)]
   if (x is None or y is None or z is None): facet_rotates += [x,y,z]

   else:
    (y,z) = (y * cos_x - z * sin_x, y * sin_x + z * cos_x) ## rotate about x
    (x,z) = (x * cos_y + z * sin_y,-x * sin_y + z * cos_y) ## rotate about y
    (x,y) = (x * cos_z - y * sin_z, x * sin_z + y * cos_z) ## rotate about z
    facet_rotates += [round(value, 9) for value in [x,y,z]]
  facet_rotatess.append(facet_rotates)
 return facet_rotatess
def translate(facetss, ds): ## ds = (dx,dy,dz)
 return [facets[:3] + [facets[3 * i_point + i_xyz] + ds[i_xyz]
                       for i_point in range(1,4) for i_xyz in range(3)]  for facets in facetss]
def flip(facetss): return [facets[:3]+facets[6:9]+facets[3:6]+facets[9:] for facets in facetss]

def cube_xyz_to_sphere_xyz(cube_xyzs):
 (x,y,z)                         = [float(xyz) for xyz in cube_xyzs]
 (x_squared,y_squared,z_squared) = (x * x,y * y,z * z)
 return (x * (1 - (y_squared + z_squared) / 2 + y_squared * z_squared / 3) ** 0.5,
         y * (1 - (x_squared + z_squared) / 2 + x_squared * z_squared / 3) ** 0.5,
         z * (1 - (y_squared + x_squared) / 2 + y_squared * x_squared / 3) ** 0.5)
def xyz_to_lla(xyzs):
 (x,y,z) = xyzs
 alt     = (x * x + y * y + z * z) ** 0.5
 lon     = math.atan2(y, x)
 lat     = math.asin(z / alt)
 return (lat,lon,alt)
deg_90 = math.pi / 2
def find_alt(lat_lons, altss):
  (lat,lon) = lat_lons
  if   (lat ==  deg_90): alt = average(altss[ 0])
  elif (lat == -deg_90): alt = average(altss[-1])
  else:
   (width,height) = (len(altss[0]),len(altss))
   x              = (0.5 + lon / (deg_90 * 4) + lat_offset) * width
   y              = (0.5 - lat / (deg_90 * 2)             ) * height
   (x_int,y_int)  = (int(x)   , int(y)   )
   (x_dec,y_dec)  = (x - x_int, y - y_int)
   (x0,x1)        = (x_int % width , (x_int + 1) % width )
   (y0,y1)        = (y_int % height, (y_int + 1) % height)
   alt            = ((altss[y0][x0] * (1 - x_dec) + altss[y1][x0] * x_dec) * (1 - y_dec) +
                     (altss[y0][x1] * (1 - x_dec) + altss[y1][x1] * x_dec) *      y_dec)
  # print(map(math.degrees, lat_lons), y,x, alt)
  return alt
def radius_wgs84(lat):
 if (lat in radius_wgs84.cachess): return radius_wgs84.cachess[lat]
 (sin_lat, cos_lat)        = (math.sin(lat), math.cos(lat))
 ff                        = (1 - f_wgs84) ** 2
 c                         = 1 / (cos_lat ** 2 + ff * sin_lat ** 2) ** 0.5
 s                         = c * ff
 radius_c_s_s              = (radius_datum * c, radius_datum * s)
 radius_wgs84.cachess[lat] = radius_c_s_s
 return radius_c_s_s
radius_wgs84.cachess = {}
def lla_to_sphere_xyz(llas):
 (lat,lon,alt)        = llas
 (sin_lat,sin_lon)    = (math.sin(lat),math.sin(lon))
 (cos_lat,cos_lon)    = (math.cos(lat),math.cos(lon))
 (radius_c, radius_s) = [(c_s_radius + alt * km_per_luma) * scale
                         for c_s_radius in radius_wgs84(lat)]
 return (radius_c * cos_lat * cos_lon,radius_c * cos_lat * sin_lon,radius_s * sin_lat)
def xyz_alt_to_xyza(xyzs, altss):
 (lat,lon,alt) = xyz_to_lla(xyzs)
 alt           = find_alt((lat,lon), altss)
 lla_alts      = [list(lla_to_sphere_xyz((lat,lon,alt))), alt]
 return lla_alts

log("Read elevation data")
png_alt = Png(path_png_alt)
if (png_alt.metadatas['planes'] != 1): print("%s not 1-channel PNG" % (path_png_alt)); sys.exit(1)
log(png_alt)
altss = [[png_alt.pixels[png_alt.width * y + x] - luma_datum
          for x in range(png_alt.width)] for y in range(png_alt.height)] ## altss[y][x]

log("Find vertices")
k       = 2.0 / n_division
range_k = range(n_division + 1)
face_vertex_llassss = [ ## [0=top][i_y][i_x][xyz,alt]
 [[xyz_alt_to_xyza((x*k-1,y*k-1,    1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((x*k-1,   -1,y*k-1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((    1,x*k-1,y*k-1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((y*k-1,x*k-1,   -1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((y*k-1,    1,x*k-1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((   -1,y*k-1,x*k-1), altss) for y in range_k] for x in range_k],
]

log("Add facets") ## cube xyz -> ll(a) -> image xy -> a -> sphere xyz
facetss = []
for (i_face,face_vertex_llasss) in enumerate(face_vertex_llassss):
 for  v in range(n_division):
  for u in range(n_division):
   (xyz00, alt00) = face_vertex_llasss[v    ][u    ]
   (xyz01, alt01) = face_vertex_llasss[v    ][u + 1]
   (xyz10, alt10) = face_vertex_llasss[v + 1][u    ]
   (xyz11, alt11) = face_vertex_llasss[v + 1][u + 1]
   (xyz_m, alt_m) = xyz_alt_to_xyza([average(xyzs) for xyzs in zip(*(xyz00,xyz01,xyz10,xyz11))],
                                    altss)
   if (alt_m > max(alt00,alt01,alt10,alt11) or alt_m < min(alt00,alt01,alt10,alt11)):
    facetss.append([None,0,0] + xyz_m + xyz00 + xyz10)
    facetss.append([None,0,0] + xyz_m + xyz10 + xyz11)
    facetss.append([None,0,0] + xyz_m + xyz11 + xyz01)
    facetss.append([None,0,0] + xyz_m + xyz01 + xyz00)
   else:
    if (abs(alt00 - alt11) < abs(alt01 - alt10)):
     facetss.append([None,0,0] + xyz00 + xyz10 + xyz11)
     facetss.append([None,0,0] + xyz11 + xyz01 + xyz00)
    else:
     facetss.append([None,0,0] + xyz10 + xyz11 + xyz01)
     facetss.append([None,0,0] + xyz01 + xyz00 + xyz10)

log("Calculate normals")
for facets in facetss:
 if (facets[0] is None or facets[1] is None or facets[2] is None):
  us      = [facets[i_xyz + 9] - facets[i_xyz + 6] for i_xyz in range(3)]
  vs      = [facets[i_xyz + 6] - facets[i_xyz + 3] for i_xyz in range(3)]
  normals = [us[1]*vs[2] - us[2]*vs[1], us[2]*vs[0] - us[0]*vs[2], us[0]*vs[1] - us[1]*vs[0]]
  normal_length = sum([component * component for component in normals]) ** 0.5
  facets[:3] = [-round(component / normal_length, 10) for component in normals]

# log(tabbify([['N%s'  % (xyz   )                   for xyz in list('xyz')] +
#              ['%s%d' % (xyz, n) for n in range(3) for xyz in list('XYZ')] + ['RGB']] + facetss))

log("Compile STL")
outss = ([[('STL\n\n%-73s\n\n' % (header[:73])).encode('utf-8'), struct.pack('<L',len(facetss))]] +
         [[struct.pack('<f',float(value)) for value in facets[:12]] +
          [struct.pack('<H',0 if (len(facets) <= 12) else
                            viscam_colour(facets[12]))] for facets in facetss])
out   = b''.join([bytes(out) for outs in outss for out in outs])
# out += ('\n\n## Python script to generate STL\n\n%s\n' % (open(__file__).read())).encode('utf-8')
log("Write STL")
with open(__file__[:__file__.rfind('.')] + '.stl', 'wb') as f_out: f_out.write(out)
log("#bytes:%d\t#facets:%d\ttitle:\"%-73s\"" % (len(out), len(facetss), header[:73]))

Лицензия бушиву

Я, владелец авторских прав на это произведение, добровольно публикую его на условиях следующей лицензии:
w:ru:Creative Commons
атрибуция бачӀаву ца журалул шартӀрай
БучӀиссар тархъанну:
  • дачӀин дан ва даву – тикрал, гьарта ягу тапшур дан ва даву
  • хӀала дан – ххишалану дан ва даву
Чара бакъа вай низамрув дуруччин аьркинни:
  • атрибуция – Дурминнул амру дан аьркинни, лицензия амру дан аьркинни барангу дуллуну, агар дурма ци дунугу даххана дуну уххурча амру дан аьркинни. Му дан бучӀиссар дан ччимур куццай, амма цайми инстантал аьйкьин къауллай лицензиат вищал чӀарав авцӀун кунма.
  • бачӀаву ца журалул шартӀрай – Агар ина даххана дуварча ягу ляхъан дуварча цамур даву ва давул гьанулий ина буржлуву ура ва давул лицензия ягу ва лицензиящал лайкьсса лицензия ишла дан.
Wikimedia Foundation
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I own now or in the future, to make, have made, use, offer to sell, sell, import, and distribute this file and any 3D objects depicted in the file that would otherwise infringe any claims of any patents I hold now or in the future.

Please note that in the event of any differences in meaning or interpretation between the original English version of this license and a translation, the original English version takes precedence.

Краткие подписи

Добавьте однострочное описание того, что собой представляет этот файл
Earth with a exaggerated elevation model

Элементы, изображённые на этом файле

изображённый объект русский

глобус Земли русский

создатель русский

У этого свойства есть некоторое значение без элемента в

Суратданул тарих

Бас ба кьини/чӀун хьхьичӀсса сурат ккаккан.

Кьини/чӀунЧӀивисса эбратКуцруГьуртту хьумаХӀучча
хӀакьинусса13:21, 15 апрелданий 2018ЧӀивисса эбрат 13:21, 15 апрелданий 20185120 × 2880 (27,66 МБ)CmgleeRotate to show the Himalayas and Mariana Trench in the thumbnail.
12:43, 15 апрелданий 2018ЧӀивисса эбрат 12:43, 15 апрелданий 20185120 × 2880 (27,63 МБ)CmgleeUser created page with UploadWizard

Хъирив нанисса 1 чӀапӀи ишла дай ва сурат:

Щаллагу дунияллул суратрая мюнпат ласаву

Ва файл ишла дайсар вай викирдал: